\begin{tabbing} $\forall$\=$i$:Id, ${\it ds}$:fpf(Id; $x$.Type), ${\it da}$:fpf(Knd; $k$.Type), $x$:Id, $T$:Type, ${\it ks}$:(Knd List),\+ \\[0ex]${\it tr}$:($k$:\{$k$:Knd$\mid$ ($k$ $\in$ ${\it ks}$)\} $\rightarrow$decl{-}state(${\it ds}$)$\rightarrow$ma{-}valtype(${\it da}$; $k$)$\rightarrow$$T$$\rightarrow$$T$). \-\\[0ex]fpf{-}compatible(Id; $x$.Type; id{-}deq; ${\it ds}$; fpf{-}single($x$; $T$)) \\[0ex]$\Rightarrow$ normal{-}type\=\{i:l\}\+ \\[0ex]($T$) \-\\[0ex]$\Rightarrow$ ($\forall$$k$:Knd. ($k$ $\in$ ${\it ks}$) $\Rightarrow$ ($\uparrow$isrcv($k$)) $\Rightarrow$ ($i$ = destination(lnk($k$)))) \\[0ex]$\Rightarrow$ normal{-}ds\=\{i:l\}\+ \\[0ex](${\it ds}$) \-\\[0ex]$\Rightarrow$ normal{-}da\=\{i:l\}\+ \\[0ex](${\it da}$) \-\\[0ex]$\Rightarrow$ R{-}realizes\=\{i:l\}\+ \\[0ex](\=R{-}state{-}var($i$; ${\it ds}$; ${\it da}$; $x$; $T$; ${\it ks}$; ${\it tr}$);\+ \\[0ex]${\it es}$.(es{-}decls(${\it es}$;$i$;${\it ds}$;${\it da}$) \\[0ex]$\Rightarrow$ \=(subtype\_rel(es{-}vartype(${\it es}$; $i$; $x$); $T$)\+ \\[0ex]c$\wedge$ \=(($\uparrow$bor(($\neg_{b}$null(${\it ks}$)); es{-}isconst(${\it es}$; $i$; $x$)))\+ \\[0ex]$\Rightarrow$ alle{-}at(\=${\it es}$;\+ \\[0ex]$i$; \\[0ex]$e$.$\forall$${\it e'}$$\geq$$e$.\=es{-}after(${\it es}$; $x$; ${\it e'}$)\+ \\[0ex]= \\[0ex]es{-}trans{-}state{-}from\{i:l\}(\=${\it es}$;${\it ks}$;\+ \\[0ex]${\it tr}$;es{-}when(${\it es}$; $x$; $e$);$e$;${\it e'}$) \-\\[0ex]$\in$ $T$))))) \-\-\-\-\-\- \end{tabbing}